Computational Studies on SO_4 and S_2O_3

Michael L. McKee

Contribution from the Department of Chemistry, Auburn University, Auburn, Alabama 36849 Received December 9, 1992

Abstract: Several structures has been considered for the neutral SO₄ species observed in a low-temperature matrix. The lowest-energy structure is predicted to have a three-membered SOO ring and $C_{2\nu}$ symmetry. Vibrational frequencies at the MP2/6-31+G* level of theory and isotope shifts for this structure are in good agreement with experiment. Disulfur trioxide (S_2O_3) is predicted to have a three-membered SSO ring (rather than an SOO ring) and to be 12.7 kcal/mol more stable than $SO_3 + S(^{3}P)$.

Introduction

Although the chemistry of SO₄ has not been widely investigated, there is good evidence that it can be prepared. Kugel and Taube¹ generated the species by photolysis of O3 in an Ar matrix containing SO₃ at 15 K. They obtained infrared spectra of SO₄ as a function of matrix composition, and they also reported infrared isotopic shifts for both ¹⁸O and ³⁴S. Two very strong bands at 1434 and 1267 cm⁻¹ were assigned to the symmetric and asymmetric stretches of an SO_2 moiety. The species is stable up to 100-150 K, but upon further warming, it undergoes a complex decomposition reaction. Schriver et al.² also report IR bands at 1442.9 and 1272 cm⁻¹, which they attribute to SO₄, after prolonged photolysis of a SO_3/O_3 mixture in an argon matrix.

SO₄ is potentially relevant to atmospheric chemistry, because it is produced by the reaction of $O(^{3}P)$ with SO₃, both of which are atmospheric constituents. Calvert et al.³ have discussed this possibility; they concluded that the reaction could be neglected because the reaction of SO_3 with atmospheric H_2O is much faster. However, a recent study of the kinetics of reaction of SO₃ with H_2O has shown that its rate constant is more than two orders of magnitude lower than was previously believed.⁴ The significance of SO₄ needs to be reevaluated.

The structure and vibrational frequencies of SO4 are the focus of the present paper. Kugel and Taubel used their isotopic infrared data to assign either a C_{2v} 1 three-membered ring structure or an open C_1 2 (or C_s 3) structure:

A tentative assignment of the SO₄ species to the C_{2v} structure (1) was made on the basis of vibrational frequencies of known metal dioxygen complexes. In a subsequent study, LaBonville et al.⁵ performed a normal coordinate analysis and assigned the peroxysulfuryl C_s structure (2). This structure (but reduced in symmetry to C_1 3) was also supported by Anderson's ASED MO calculations.⁶ In contrast to these latter reports, the present work finds that higher-level ab initio methods support the C_{2v} structure (1).

(1) Kugel, R.; Taube, H. J. Phys. Chem. 1975, 79, 2130.

(2) Schriver, L.; Carrere, D.; Shriver, A.; Jaeger, K. Chem. Phys. Lett. 1991, 181, 505.

(3) Calvert, J. G.; Su, F.; Bottenheim, J. W.; Strausz, O. P. Atmos. Environ.

0002-7863/93/1515-9136\$04.00/0

The two alternative structures considered for SO₄ bear some resemblance to the proposed intermediates in the oxidation of sulfides.^{7,8} The possible intermediates are either a zwitterionic

or biradical persulfoxide (R_2 SOO) or a thiadioxirane (R_2 SOO). From the observed IR spectrum of a sulfide in an oxygen matrix at 13 K, Akasaka et al.9 concluded that the intermediate in the oxidation was the zwitterionic species. However, evidence has also been presented⁷ which suggests that formation of the thiadioxirane is competitive with formation of the zwitterionic persulfoxide. The global minimum on the R₂SO₂ surface is the sulfone,7 which is significantly more stable than either intermediate. Of course, there is no reason to expect similar structures for R_2SO_2 and SO_4 , since the sulfur in SO_4 is in a different electronic environment than in R_2SO_2 .

Methods

Calculations have been made using the GAUSSIAN 90,10 GAUSSIAN 92,11 and GAMESS program systems.12 Geometries were fully optimized within the appropriate point group at the HF/3-21G* and HF/6-31+G* levels, and for two structures also at the MP2/6-31+G* level.¹³ Openshell species were calculated with the unrestricted Hartree-Fock formalism. The effect of spin contamination in open-shell species has been projected out of the MP energies (PMP) by the spin-projection method developed by Schlegel and co-workers.¹⁴ Geometry optimization at the correlated level of theory included core orbitals (FULL option) while MP4 and PMP4 calculations employed the frozen-core approximation.

Absolute energies (hartrees) are given in Table I and relative energies (kcal/mol) are given in Table II, while selected geometric parameters are given in Figure 1 for $SO_4(1-10)$, $S_2O_3(11, 12)$, and related molecules.

Vibrational frequencies have been calculated analytically at the Hartree-Fock level and by finite difference of analytical first derivatives at the MP2 level. Relative energies were not corrected for zero-point differences because several of the SO4 stationary points yield unrealistic

QCPE Bull. 1990, 10, 52. (13) For a description of basis sets see: Hehre, W. J.; Radom, L.; Schlever,

(14) Sosa, C.; Schlegel, H. B. Int. J. Quantum Chem. 1986, 29, 1001. Schlegel, H. B. J. Chem. Phys. 1986, 84, 4530.

© 1993 American Chemical Society

⁽⁴⁾ Wang, X.; Jin, Y. G.; Suto, M.; Lee, L. C.; O'Neal, H. E. J. Chem. Phys. 1988, 89, 4853. (5) LaBonville, P.; Kugel, R.; Ferraro, J. R. J. Chem. Phys. 1977, 67,

¹⁴⁷⁷ (6) Anderson, A. B. Chem. Phys. Lett. 1982, 93, 538.

⁽⁷⁾ Watanabe, Y.; Kuriki, N.; Ishiguro, K.; Sawaki, Y. J. Am. Chem. Soc. 1991, 113, 2677

⁸⁾ Jensen, F.; Foote, C. S. J. Am. Chem. Soc. 1988, 110, 2368.

 ⁽⁹⁾ Akasaka, T.; Yabe, A.; Ando, W. J. Am. Chem. Soc. 1987, 109, 8085.
 (10) GAUSSIAN 90: Frisch, M. J., Head-Gordon, M., Trucks, G. W., Foresman, J. B., Schlegel, H. B., Raghavachari, K., Robb, M., Binkley, J. S., Gonzales, C., DeFrees, D. J., Fox, D. J., Whiteside, R. A., Seeger, R., Melius, C. F., Baker, J., Martin, R. L., Kahn, L. R., Stewart, J. J. P., Topiol, S., Pople, J. A.; Gaussian, Inc.: Pittsburgh, PA, 1990.

⁽¹¹⁾ GAUSSIAN 92: Frisch, M. J. Trucks, G. W., Head-Gordon, M., (11) GAUSSIAN 92: Frisch, M. J. ITucks, G. W., Head-Gordon, M.,
Gill, P. M. W., Wong, M. W., Foresman, J. B., Johnson, B. G., Schlegel, H. B., Robb, M. A., Replogle, E. S., Gomperts, R., Andres, J. L., Raghavachari, K., Binkley, J. S., Gonzales, C., Martin, R. L., Fox, D. J., DeFrees, D. J.,
Baker, J., Stewart, J. J. P., Pople, J. A.; Gaussian, Inc.: Pittsburgh, PA, 1992.
(12) Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Jensen, J. H.; Koseki,
S.; Gorden, M. S.; Nguyen, K. A.; Windus, T. L.; Elbert, S. T. GAMESS.

P. v. R.; Pople, J. A. Ab Initio Molecular Orbital Theory; Wiley: New York, 1986

Table I. Absolute Energies (hartrees) for Various Species at Optimized 3-21G*, 6-31+G*, and MP2/6-31+G* Geometries

					3-21G*		//6-31+G*			
	sym	state	HF/3-21G*	HF/6-31G*	PMP2/6-31G*	PMP4/6-31G*	HF/6-31+G*	PMP2/6-31+G*	PMP4/6-31+G*	$\langle S^2 \rangle$
0	K	1D	-74.35056	-74.74628	-74.80425	-74.82142	-74.74887	-74.80960	-74.82736	1.01
0	K	3P	-74.39366	-74.78393	-74.88131	-74.89662	-74.78676	-74.88687	-74.90274	2.01
S	K	۱D	-395.61094	-397.45552	-397.50754	-397.52653	-397.45621	-397.50903	-397.52816	1.02
S	K	³ P	-395.63122	-397.47596	-397.55420	-397.57181	-397.47669	-397.55574	-397.57348	2.01
O ₂	Dh	$^{1}\Delta_{g}$	-148.73864	-149.57919	-149.91716	-149.93238	-149.59294	-149.91527	-149.93256	2.04
O ₂	D.h	${}^{3}\Sigma_{g}^{-}$	-148.76908	-149.60841	-149.95558	-149.96717	-149.62207	-149.95568	-149.96938	1.02
SO	$C_{\infty h}$	¹ Δ	-470.05394	-472.30771	-472.58676	-472.60961	-472.31357	-472.59483	-472.61860	1.03
SO	$C_{\infty h}$	³ Σ	-470.07466	-472.32734	-472.61637	-472.63610	-472.33312	-472.62449	-472.64510	2.04
SO ₂	C_{2v}	$^{1}A_{1}$	-544.50373	-547.16892	-547.67442	-547.70048	-547.17570	-547.68810	-547.71535	
S ₂ O	C,	1 A ′	-865.70915	-869.80662	-870.25703	-870.29514	-869.81310	-870.27002	-870.30905	
SO₃	D3h	¹ A ₁ ′	-618.91501	-621.98140	-622.66322	-622.69050	-621.98846	-622.67845	-622.70751	
SO4 1	C_{2v}	$^{1}A_{1}$	-693.25472	-696.70327	-697.57985	-697.61648	-696.71256	-697.59235	-697.63078	
O ₂ SOO 2	C,	'Α″	-693.23969	-696.68849	-697.51602	-697.56700	-696.70643	-697.54221	-697.59378	1.04
O ₂ SOO 3	C_1	۱A		no r	ninimum		-696.71201	-697.55069	-697.60202	1.03
SO4 (1) 4	C_{3v}	۱E	-693.28414	-696.73008	-697.54014	-697.59293	-696.73834	-697.56099	-697.61707	1.09
SO4 (s) 5	C_{3v}	۱E	-693.27716	-696.72488	-697.53370	-697.58612	-696.73325	-697.55428	-697.60979	1.07
SO4 6	C_{3v}	¹ A ₁	-693.14444	-696.58955	-697.54919	-697.58124	-696.59753	-697.57009	-697.60548	
SO4 7	C_{3v}	³ E	-693.29107	-696.73706	-697.52794	-697.58107	-696.74552	-697.54914	-697.60533	2.05
SO4 8	C_{3v}	$^{3}A_{2}$	-693.29218	-696.73503	-697.53956	-697.58856	-696.74392	-697.55988	-697.61199	2.13
SO4 9	C_s	1A″	-693.29662	-696.74504	-697.55231	-697.60244	-696.75281	-697.57299	-697.62609	1.06
SO4 10	Cs	3A″	-693.29890	-696.74601	-697.54253	-697.59336	-696.75411	-697.56748	-697.61726	2.07
O ₂ SSO 11	C _s	¹ A′	-1014.51670	-1019.41974	-1020.23149	-1020.27701	-1019.42996	-1020.25322	-1020.30117	
SOSOO 12	Cs	¹ A′	-1014.45100	-1019.33810	-1020.16387	-1020.21178	-1019.34956	-1020.17841	-1020.22810	
					//MP2/6-31+G*					
				Ē	IF/6-31+G*	PMP2/6	-31+G*	PMP4/6-31+0	G* (<i>S</i> ²)	>
SO₄		C2	, ¹ A	-1	-696.69392	-697.6	50937	-697.65110		
SO₄		<i>C</i> ,	1A	"	-696.74659	-697.5	57959	-697.63431	1.06	5

Table II. Relative Energies (kcal/mol) for Various Species at Optimized 3-21G*, 6-31+G*, and MP2/6-31+G* Geometries

		-0	, ,			•	,		'				
			//3-21G*				//6-31+G*				//MP2/6-31+G*		
	sym	state	HF/ 3-21G*	HF/ 6-31G*	PMP2/ 6-31G*	PMP4/ 6-31G*	HF/ 6-31+G*	PMP2/ 6-31+G*	PMP4/ 6-31+G*	HF/ 6-31+G*	PMP2/ 6-31+G*	PMP4/ 6-31+G*	
0 + SO3	K, D_{3h}	¹ D, ¹ A ₁ '	-6.8	-15.3	70.5	65.6	-15.5	65.4	60.2				
$O + SO_3$	K, D_{3h}	³ P, ¹ A ₁ '	-25.9	-33.6	46.4	43.8	-33.8	40.0	37.1				
$SO_2 + O_2$	$C_{2v}, D_{\infty h}$	$^{1}A_{1}, ^{1}\Delta_{g}$	7.7	-28.1	-7.4	-10.3	-35.2	-6.9	-10.7				
SO4 1	C_{2v}	¹ A ₁	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
O ₂ SOO 2	C_s	¹ A″	9.4	9.3	40.0	31.0	3.8	31.5	23.2				
$O_2 SOO 3$	C_1	ιA		no mi	nimum		0.3	26.1	18.0				
SO ₄ (1) 4	C_{3p}	۱E	-18.5	-16.8	24.9	14.8	-16.2	19.7	8.6				
SO ₄ (s) 5	C_{3v}	۱E	-14.1	-13.6	29.0	19.0	-13.0	23.9	13.2				
SO4 6	C_{3n}	¹ A ₁	69.2	71.4	19.2	22.1	72.2	14.0	15.9				
SO₄ 7	C_{3v}	3E_	-22.8	-21.2	32.6	22.2	-20.7	27.1	16.0				
SO ₄ 8	C_{3p}	³ A ₂	-23.5	-19.9	25.3	17.5	-19.7	20.4	11.8				
SO ₄ 9	C_s	¹ A ⁷	-26.3	-26.2	17.3	8.8	-25.2	12.1	2.9	-33.0	18.7	10.5	
SO4 10	Ċ,	³ A″	-27.7	-26.8	23.4	14.5	-26.1	15.6	8.5				
S + SO3	K, D_{3h}	¹ D, ¹ A ₁ '	-5.8	-10.8	38.1	37.6	-9.2	41.2	41.1				
$S + SO_3$	K, D_{3h}	³ P, ¹ A ₁ '	-18.5	-23.6	8.8	9.2	-22.0	11.9	12.7				
$SO_2 + SO$	$C_{2v}, C_{\infty v}$	${}^{1}A_{1}, {}^{1}\Delta$	-25.7	-35.7	-18.6	-20.8	-37.2	-18.6	-20.6				
$S_2O + O_2$	C_s, D_{mh}	$^{1}A', ^{1}\Delta_{g}$	43.2	21.3	36.0	31.0	15.0	42.6	37.4				
O₂SSO 11	Cs	¹ A′	0.0	0.0	0.0	0.0	0.0	0.0	0.0				
SOSOO 12	C,	¹ A′	41.2	51.2	42.4	40.9	50.4	46.9	45.8				

frequencies. The problem is revealed by frequencies (real or imaginary) that are too large (i.e. >6000 cm⁻¹). A similar situation has been found for analytical frequencies of the Hartree–Fock wave function of twisted ethylene where an imaginary frequency of 10138i was reported with a standard DZ basis set.¹⁵ The result is an indication that standard single-configurational methods may not be adequate for describing the electronic wave function in these systems. However, it should be pointed out a single-configurational method supplemented by perturbative correlations for electron correlation was found to be very close in energy to a large MCSCF treatment near a crossing point in the H₄⁺ system,¹⁶ a section of the potential energy surface where single-configurational methods are often cited as being unreliable. While other properties (e.g. frequencies,

charge distributions, etc.) may quickly become unreliable due to the symmetry-breaking phenomena, relative energy (based on a singleconfigurational method and corrected by perturbation theory) may be somewhat more accurate. The Hartree–Fock and MP2 frequencies of 1 did not suffer from the above-mentioned difficulties, which is no doubt due to the fact that the wave function for this structure is better described by a single (HF) configuration.

Results and Discussion

The electron configuration of sulfur tetraoxide in T_d symmetry gives rise to degenerate electronic states, which are Jahn–Teller unstable¹⁷ and distort to lower-symmetry and lower-energy

(17) Jahn, H. A.; Teller, E. Proc. R. Soc. London, Ser. A 1937, A161, 220.

⁽¹⁵⁾ Yamaguchi, Y.; Osamura, Y.; Schaefer, H. F. J. Am. Chem. Soc. 1983, 105, 7506.

⁽¹⁶⁾ Jungwirth, P.; Čársky, P.; Bally, T. Chem. Phys. Lett. 1992, 195, 371.

Figure 1. Selected geometric parameters (in angströms and degrees) are given at the (U)HF/6-31+G* level for SO4 species 1-10, for S2O3 species 11 and 12, and for miscellaneous species (O₂, SO, SO₂, S₂O, and SO₃). Values in parentheses are at the $(U)MP2/6-31+G^*$) level and those in brackets are at the $CAS(2\times 2)/6-31G^*$ level.

Figure 2. Schematic depiction of the electronic states involved in the descent in symmetry from T_d to C_{3v} .

structures. To determine the nature of these structures it is instructive to consider the analogous systems, CH_4^+ and CH_4^{2+} . Like SO_4^{2-} , CH₄ has tetrahedral symmetry. The HOMO of both species is triply degenerate: t_1 symmetry for SO₄²⁻ and t_2 for CH₄.

One way of determining the preferred direction of distortion is the epikernel principle^{18,19} which states that the distortion is toward the "maximal allowed subgroup of the undistorted parent group". Wang and Boyd²⁰ have investigated the epikernel principle for the BH3+ radical in relation to the electron distribution of the HOMO. One component of the canonical HOMO in D_{3h} symmetry (e₁ symmetry) transforms under the C_{2v} subgroup and a distortion of the nuclei toward C_{2v} symmetry would make the average electron-nuclear distance shorter and lead to a lower energy. Their discussion considers only the firstorder Jahn-Teller effect and they state that in other systems the coupling between the ground state and excited states (secondorder Jahn-Teller effect) must be considered.

For CH₄⁺, distortion is preferred along a direction which reduces the symmetry of the HOMO to one-dimensional representations, i.e. $C_{2\nu}$. This is supported by detailed quantum mechanical calculations²¹⁻²³ and confirmed by ESR experiments.^{21a} However, for CH_4^{2+} the distortion required to reach the lowestenergy structure is more complicated. Theoretical calculations by Wong and Radom²⁴ indicate that CH₄²⁺ has a planar carbon of C_{2v} symmetry which is about 13 kcal/mol more stable than a planar structure of D_{4h} symmetry. The latter structure can be reached from T_d symmetry through a D_{2d} distortion (i.e. flattening a tetrahedron). Thus, the lowest-energy structure which results from Jahn-Teller distortions is not at all obvious.

As is indicated in Table I, SO₄ was investigated in a variety of symmetries and configurations. Figure 2 shows in a schematic way how these states arise.²⁵ Consider first the tetrahedral SO₄²⁻ molecule, which has a filled set of triply degenerate HOMOs. If this molecule is then ionized to give neutral tetrahedral SO4, the remaining four valence electrons can be distributed among the HOMOs to give four electronic states: ${}^{3}T_{1}$, ${}^{1}T_{2}$, ${}^{1}E$, and ${}^{1}A_{1}$. Descent to C_{3v} symmetry breaks the degeneracy of the two T states and leads to two pairs of states $({}^{3}A_{2} \text{ and } {}^{3}E)$ and $({}^{1}A_{1} \text{ and }$

- (21) (a) Knight, L. B., Jr.; Steadman, J.; Feller, D.; Davidson, E. R. J. Am. Chem. Soc. 1984, 106, 3700. (b) Frey, R. F.; Davidson, E. R. J. Chem. Phys. 1988, 88, 1775. (c) Paddon-Row, M. N.; Fox, D. J.; Pople, J. A.; Houk, K. N.; Pratt, D. W. J. Am. Chem. Soc. 1985, 107, 7696.

 (22) Frey, R. F.; Davidson, E. R. J. Chem. Phys. 1988, 88, 1775.
 (23) Boyd, R. J.; Darvesh, K. V.; Fricker, P. D. J. Chem. Phys. 1991, 94, 8083

(24) Wong, M. W.; Radom, L. J. Am. Chem. Soc. 1989, 111, 1155. (25) See: Cotton, F. A. Chemical Application of Group Theory; Wiley-Interscience: New York, 1971.

⁽¹⁸⁾ Ceulemans, A.; Beyens, D.; Vanquickenborne, L. G. J. Am. Chem. Soc. 1984, 106. 5824.

⁽¹⁹⁾ Ceulemans, A.; Vanquickenborne, L. G. Struct. Bonding 1989, 71, 125

⁽²⁰⁾ Wang, J.; Boyd, R. J. J. Chem. Phys. 1992, 96, 1232.

Reaction Coordinate C_{3v}

Figure 3. Reaction profile under $C_{3\nu}$ constraint. The two ¹E states (4, 5) are separated by an avoided crossing.

¹E). The E states are Jahn-Teller unstable, and under C_s symmetry they distort to give four states: ¹A', ¹A'', ³A', and ³A''. The C_s ¹A' state is essentially a diradical, with the two unpaired electrons residing in oxygen P orbitals that are coplanar; this state is therefore unstable with respect to forming a bond between these two oxygen atoms, and this leads to a ¹A₁ state in C_{2v} symmetry. The complete roster of potential ground states thus comprises the ¹A₁ symmetry state in the C_{2v} point group (1), the ¹A'' (9), ³A', and ³A'' (10) states in the C_{3v} point group.

Of these six species (where species refers to a specific state/ structure combination), the ${}^{3}A' C_{s}$ species is related to the ${}^{1}A_{1}$ $C_{2\nu}$ species (1) simply by inverting one of the electrons in the O-O bond. This should be energetically unfavorable, and therefore this ${}^{3}A'$ species is excluded from consideration.

As is shown in Table I and II, the above five species (1, 6, 8, 9, 10), two peroxy species (2, 3), and three species with a degenerate state of C_{3v} symmetry (4, 5, 7) have been examined at various levels of theory. An important feature of these results is that 1 is much higher in energy when the Hartree–Fock method is used, but it becomes lowest in energy when electron correlation is introduced through the Møller–Plesset method. The effect is by no means subtle, being greater than 30 kcal/mol in some cases.

The multiconfigurational character of 1 was investigated by performing a MCSCF calculation. Preliminary calculations indicated that the second most important contributor to the MCSCF wave function was the σ^* O-O orbital which would become a lone pair in the SO₄²⁻ anion. An optimization of SO₄ was carried out with a complete active space (and the 6-31G* basis set) including the occupied σ O-O orbital and the unoccupied σ^* orbitals (CAS(2×2)). The SCF configuration contributed 89% to the wave function. The σ O-O orbital has a natural population of 1.78 electrons while the σ^* O-O orbital has a natural nature of the C_{2v} structure of SO₄ is significant, the SCF configuration is sufficiently dominant that electron correlation can be estimated by perturbative corrections.

When the symmetry of SO₄ is lowered from T_d to C_{3v} the symmetry of the HOMO is lowered from t_1^4 to $(a_2e_1)^4$ which gives rise to two ¹E states (4, 5). In one ¹E state the $a_2^{1}e_1^3$ configuration is dominant while in the other ¹E state the $a_2^{2}e_1^2$ configuration is dominant. In the SCF optimization, a very different minimum was obtained depending on whether the $a_2^{1}e_1^3$ or $a_2^2e_1^2$ configuration was occupied. The former configuration gave a structure with a long unique S–O bond (1.591 Å), denoted the "long bond isomer" (4), and the latter configuration gave a structure with a short unique S–O bond (1.402 Å), denoted the "short bond isomer" (5).

The region around each minimum is dominated by the SCF configuration with the other configuration describing the excited state. A state crossing will occur on the reaction coordinate connecting the two stationary points in C_{3v} symmetry and an MCSCF wave function would be necessary to describe the

Figure 4. The ¹A" components of both ¹E states relax to the same geometry in C_s symmetry.

connecting path (Figure 3). However, both ¹E states will Jahn– Teller distort to give (in C_s symmetry) a ¹A' state and a ¹A'' state (9). The ¹A' component of each ¹E state corresponds to a biradical which collapses to 1. The ¹A'' component of both ¹E states leads to a common biradical (9), one with the α unpaired electron on one of the oxygens in the molecular plane and the β electron distributed between the two oxygens out of the molecular plane. Figure 4 illustrates the symmetry lowering and the common biradical.

At the PMP4/6-31+G* level the five states of C_{3v} symmetry (4-9) are all close in energy (8.6-16.0 kcal/mol, Table II), which is in sharp contrast to the Hartree–Fock level where the difference is almost 100 kcal/mol. With the exception of the ¹A₁ state (6), the *average* S–O distances in the states of C_{3v} symmetry are within 0.006 Å of each other.

In C_s symmetry, two A" states are calculated, the singlet (9) and triplet (10) states. The singlet state (¹A", 9) is 2.9 kcal/mol less stable than 1 while the triplet state (³A", 10) is 8.5 kcal/mol less stable than 1. Since the energy separation between 1 and 9 is very small, the geometries of both species were reoptimized at the MP2/6-31+G* level of theory. Electron correlation stabilizes the three-membered ring, and at the MP4/6-31+G*/ /MP2/6-31G+G* level of theory 9 is 10.5 kcal/mol less stable than 1 (Table II).

Vibrational Frequencies

Vibrational frequencies were calculated for all species. However, as indicated above, the solution of the CPHF equations gave spurious results due to the presence of low-lying broken symmetry solutions to the SCF wave function. The stability of the wave function for the C_{2v} structure (1) was tested and found to be stable to release of all constraints except RHF \rightarrow UHF. Thus, the onset of the symmetry-breaking phenomena was delayed sufficiently for 1 that the CPHF solution gave reasonable results at all levels including the MP2/6-31+G* level of theory.

The vibrational frequencies of SO₂ and SO₃, calculated at the HF/6-31+G* level (SO₂, 590, 1351, 1550 cm⁻¹; SO₃, 559, 581, 1209, 1540 cm⁻¹), are in reasonable agreement with experiment²⁶ (SO₂, 518, 1151, 1362 cm⁻¹; SO₃, 495, 529, 1068, 1391 cm⁻¹). Since frequencies of SO₂ and SO₃ have been reported at higher

Table III. Calculated Vibrational Frequencies (cm⁻¹) and IR Intensities (km) for SO₄ C_{2v} (1)

sym	HF/ 3-21G*	MP2/ 3-21G*	HF/ 6-31+G*	MP2/ 6-31+G*	exptl ^a	description
bı	1579(309)	1487(173)	1557(347)	1436(225)	1434 (vs)	SO ₂ as stretch
a 1	1414(268)	1272(137)	1402(311)	1245(186)	1267 (vs)	SO ₂ s stretch
aı	1130(3)	917(8)	1115(14)	876(30)	927	OO ring stretch
b ₂	755(0)	860(91)	805(10)	795(84)	777	SO ₂ as ring stretch
a 1	783(91)	652(75)	789(72)	643(66)	611	SO ₂ s ring stretch
b ₂	542(58)	461(30)	555(57)	455(27)	(530)	bend
a	540(25)	472(8)	538(27)	460(12)	498	SO ₂ scissor
b 1	535(52)	466(30)	528(44)	450(27)	490	bend
a2	379(0)	313(0)	361(0)	283(0)		twist

^a Reference 1. The two frequncies were described as very strong (vs).

levels of theory,²⁶ the present objective is only to demonstrate that the HF/6-31+G* level gives reasonable agreement with experiment for the well-known SO₂ and SO₃ molecules.

A comparison is made in Table III with the vibrational frequencies calculated at the HF and MP2 levels for 1 with the 3-21G* and 6-31+G* basis sets and the experimental frequencies of the species found in the O_3/SO_3 photoirradiated matrix. The HF frequencies do not change significantly between the 3-21G* and $6-31+G^*$ basis sets. The exception is the SO₂ asymmetric ring stretch which increases 50 cm^{-1} at the HF/6-31+G* level. The effect of electron correlation is much more pronounced. For both basis sets, the largest change $HF \rightarrow MP2$ occurs in the O-O ring stretch which decreases $213(3-21G^*)$ or $239 \text{ cm}^{-1}(6-31+G^*)$. While intensities vary considerably among the different levels of theory,²⁷ all methods predict the symmetric and asymmetric SO₂ stretch to be the most intense. It is noteworthy that only these two bands were described as very strong in the experimental spectrum.1

At the highest level of theory $(MP2/6-31+G^*)$, agreement between calculation and experiment is quite good. The largest deviation is for the OO ring stretch which is underestimated by 51 cm⁻¹. The underestimation is unusual because calculated frequencies at the correlated level of theory are usually overestimated by about 5%.28 The same mode is overestimated by 188 cm⁻¹ at the HF/6-31+G* level of theory. At the Hartree-Fock level, there is no contribution from the $\sigma(O-O) \rightarrow \sigma^*(O-O)$ configuration which should make the calculated frequency for this mode too high. It appears that the contribution of the σ - $(O-O) \rightarrow \sigma^*(O-0)$ configuration to the OO ring stretch may be exaggerated at the MP2 level. The importance of this configuration can be seen in the O-O distance, which increases 0.116 Å on going from the HF to the MP2 level (1.516 \rightarrow 1.632 Å). While vibrational frequencies were not calculated at the CAS/ $(2\times 2)/6-31G^*$ level, it is interesting to point out that the O–O distance at that level is longer than the HF or MP2 value (1.743 Å).

The calculated isotopic shifts of the IR frequencies are presented in Table IV for the SO₄ molecule (1) labeled with one ${}^{34}S$ atom and with four ¹⁸O atoms. With one exception, the calculated and experimental shifts are in very good agreement. The exception is the $S^{18}O_4$ shift for a bend of b_1 symmetry which is in error by 12 cm^{-1} at the MP2/6-31+G* level. The calculated isotope shift (Table IV) data taken together with the good agreement in the calculated vibrational frequencies (Table III) make a convincing argument for the C_{2v} symmetry structure as the species observed in the low-temperature matrix.²⁹ Calculated vibrational frequencies and isotopic shifts $(UHF/6-31+G^*)$ for the peroxy structure 3 are compared with experiment in Table V. The agreement is much poorer. The SO_2 symmetry stretch is predicted to be of only medium intensity while the experimental mode has very strong intensity. Also, the S¹⁸O₄ isotopic shifts of the SO₂ symmetric stretch and the OO stretch are calculated to be much larger than observed.

Atomic Overlap Matrix (AOM). A method has been described by Bader³⁰ for determining atomic charges that are less dependent on a chosen basis set. First, critical points in electron density are located, and then a surface of zero flux is determined around each attractor (nuclear center) and the volume is integrated. These charges can be rigorously interpreted and have been found to be useful in a variety of contexts.³¹ Next, the orbitals are localized by a method described by Cioslowski and the atomic overlap matrix (AOM) is determined,^{32,33} the off-diagonal elements of which are the bond orders.

The AOM bond orders and the percent ionicity (0% = 100%)covalent bond) are given in Table VI for the C_{2n} structure of SO₄ (1) calculated with the $HF/3-21G^*$ and $MP2/6-31+G^*$ methods. Several observations can be made. First, the picture does not substantially change between the HF/3-21G* and MP2/6-31+G* levels. At the higher level of theory $(MP2/6-31+G^*)$, the lone pairs on the terminal oxygens are predicted to have a bonding component with sulfur as judged by a very polar π bond. At the lower level (HF/3-21G*) the minimum contribution is not met and the electrons are described only as a lone pair. Second, despite the very long O-O bond length $(1.516 \text{ Å}, \text{MP2}/6-31+G^*)$, the bond has multiple bond character (bond order = 1.12 at MP2/ 6-31+G*). However, the bond order does not necessarily indicate bond strength, and the σ and π components of the O-O bond may both be weak. Third, the bonding of the two terminal oxygens in SO₄ is very similar to the S-O bonding in SO₃ as judged by calculations carried out at a similar level of theory³⁴ (MP2/6- $311+G^*$). Thus, the O₂ unit in SO₄ binds to SO₂ in a similar fashion as an oxygen atom in SO₃ binds to SO₂. The terminal S-O bond orders in SO₄ are 1.22 (MP2/6-31+G*) compared to values of 1.13 in SO₃ (MP2/6-311+G*). The comparison can be carried to the asymmetric SO₂ stretch in SO₄ and SO₃ (the symmetric stretch of SO₃ would involve all three oxygen atoms and would not be an appropriate comparison). At the HF/6- $31+G^*$ level, the asymmetry SO₂ stretch in SO₄ (1557 cm⁻¹) is very close to the asymmetry S-O stretch in SO₃ (1540 cm⁻¹).

An illustration of the interaction of the SO_2 fragment with O_2 in SO₄ and O in SO₃ is presented in Figure 5. In SO₄ the π bond of O₂ donates charge into the empty σ acceptor orbital of SO₂ and the lone pair of SO₂ donates charge into the empty π^* orbital of O_2 . In SO₃ filled and empty p orbitals on oxygen play the role of π and π^* orbitals.

Possible Decomposition Mechanism of SO₄. The SO₄ species is stable up to 100-150 K.¹ Upon further warming, "the vacuum inside the cell degenerated and the characteristic ESR spectrum of O₂ gas was observed, indicating thermal decomposition of SO₄".¹ It may be of interest to speculate on the mechanism of decomposition. While the peroxy species (3) may not be the species observed in a low-temperature matrix, it may be on the pathway for decomposition of SO₄ as indicated in Figure 6. The biradical (3) is 18.0 kcal/mol higher in energy than the C_{2v} species

⁽²⁶⁾ See: Flament, J. P.; Rougeau, N.; Tadjeddine, M. Chem. Phys. 1992, 167, 53.

⁽²⁷⁾ Miller, M. D.; Jensen, F.; Chapman, O. L.; Houk, K. N. J. Phys. Chem. 1989, 93, 4495.

⁽²⁸⁾ DeFrees, D. J.; McLean, A. D. J. Chem. Phys. 1985, 82, 333.

⁽²⁹⁾ For a discussion of the application of calculated spectra to the identification of unusual molecules see: Hess, B. A., Jr.; Schaad, L. J. Chem. Rev. 1986, 86, 709

⁽³⁰⁾ Bader, R. F. W. Atoms in Molecules: A Quantum Theory; Claredon Press: Oxford, 1990.

⁽³¹⁾ Bader, R. F. W.; Laidig, K. E. THEOCHEM 1992, 261, 1.
(32) Cioslowski, J.; Mixon, S. T. J. Am. Chem. Soc. 1991, 113, 4142.
(33) Cioslowski, J.; Surján, P. R. THEOCHEM 1992, 255, 9.
(34) Cioslowski, J.; Mixon, S. T. Private communication.

⁽³⁵⁾ Chase, M. W., Jr.; Davies, C. A.; Downey, J. R., Jr.; Frurip, D. J.; McDonald, R. A.; Syverud, A. N. J. Phys. Chem. Ref. Data 1985, 14, Suppl. 1; JANAF Thermochemical Tables, 3rd ed.

			32S18O4		³⁴ S ¹⁶ O ₄						
sym	HF/3-21G*	MP2/3-21G*	HF/6-31+G*	MP2/6-31+G*	obs	HF/3-21G*	MP2/3-21G*	HF/6-31+G*	MP2/6-31+G*	obs	
b ₁	48	45	48	44	47	21	20	21	19	16	
a	49	48	48	47	44	16	12	16	12	11	
a	64	50	62	46	44	1	1	2	2	1	
b ₂	35	31	36	29	31	3	9	5	8	10	
a ₁	35	28	37	30	29	5	5	4	5	1	
b ₂	17	19	18	18		3	4	8	4		
a	30	26	29	25		6	0	1	0		
b ₁	25	22	25	21	9	3	2	4	3	3	
a2	22	18	21	16		0	0	0	0		

Table V. Calculated Vibrational Frequencies (cm^{-1}) , IR Intensities (km), and Isotope Shifts (cm^{-1}) of O₂SOO (3) at the UHF/6-31+G* Level

			isotop				
		32S	18O4	³⁴ S	16O4		
freq (int)	exptl ^{a,b}	calc	exptl	calc	exptl	description	
1410 (130)	1434 (vs)	44	47	18	16	SO ₂ as stretch	
1209 (39)	1267 (vs)	57	44	5	11	SO ₂ s stretch	
1184 (81)	927	65	44	1	1	OO stretch	
766 (135)	777	30	31	7	10	SO stretch	
555 (41)	611	18	29	7	1	SO ₂ wag	
525 (35)	(530)	21		5		SOO bend	
427 (9)	490	23	9	1	3	SO ₂ scissor	
283 (3)	498	15		1		SO ₂ rock	
118 (1)		6		0		torsion	

^a Reference 1. The two frequencies were described as very strong (vs). ^b The present work suggests that the experimental frequencies refer to the C_{2v} structure 1 rather than the peroxy structure 3.

Table VI. AOM-Based Covalent Bond Orders and Percent Ionicity for SO₄ C_{2v} (1) and SO₃

		S	SO.				
	HF/3-21G*		MP2/	6-31+G*	MP2/6-311+G* "		
	AOM	ionicity ^b	AOM	ionicity ^b	AOM	ionicity ^b	
S102	0.76	σ 56.2	0.71	σ 61.2			
0,01	1.22	σ 0.0	1.12	σ 0.0			
S1O4	1.31	σ 41.1	1.22	σ 58.3	1.13	σ 54.7	
				π 78.0		π 70.0	
O4O2	0.14		0.14				
Q405	0.22		0.22		0.25		

^a Reference 34. ^b Percent.

Figure 5. Illustration of the similarity in the donor/acceptor properties of O_2 and O interacting with a SO₂ fragment. In O_2 the π and π^* orbitals play the role of the two p orbitals of oxygen.

(1). Not only does this value represent the S–O bond strength in the SOO three-membered ring, it may also represent either the transition state or high-energy intermediate on the pathway to the decomposition products, SO_2 and O_2 . With respect to the biradical (3), the S–O bond energy is –28.7 kcal/mol. Thus, breaking the second S–O bond is an exothermic process. An overall activation of about 18 kcal/mol would be consistent with a thermal stability of SO₄ to about 100–150 K.

Figure 6. Possible SO₄ decomposition pathway to SO₂ plus O₂ through a peroxy-like transition state/intermediate (3). Calculated values are in kcal/mol relative to 1 at the MP4/6-31+G*//6-31+G* level. It is known that SO₄ is stable in a matrix to 100-150 K.

 S_2O_3 . A natural extension of this work is to determine the lowest energy species resulting from the removal of two electrons from thiosulfate to form disulfur trioxide, S2O3. In analogy with the results on SO₄, two alternatives were considered: one structure which contained an SSO three-membered ring (11) and one which contained an SOO three-membered ring and a terminal S-S bond (12). At the MP4/6-31+ $G^*//6-31+G^*$ level of theory, the structure with the SSO three-membered ring (11) is 45.8 kcal/ mol more stable than the structure with a SOO three-membered ring (12). With respect to a sulfur atom in the 1D state plus SO3, the SSO ring structure (11) is predicted to be exothermic by 41.1 kcal/mol while the SOO ring structure (12) is predicted to be endothermic by 4.7 kcal/mol. The decomposition products are predicted to be SO₂ plus SO ($^{1}\Delta$), which is 20.6 kcal/mol exothermic with respect to 11, rather than S_2O plus O_2 ($^1\Delta_e$), which is endothermic by 37.4 kcal/mol. The ground state of SO is the ${}^{3}\Sigma$ state which is predicted to be 16.6 kcal/mol lower in energy than the $^{1}\Delta$ state at the MP4/6-31+G* level.

The calculated structures 11 and 12, which are given in Figure 1, are closely related to the C_{2v} SO₄ structure (1) with a sulfur atom replacing the oxygen atom of the ring (11) or at a terminal position (12). Why is there a strong preference for sulfur to be in the three-membered ring? One explanation is that a sulfur atom in a three-membered ring with two σ bonds (11) is expected to be preferable to a terminal sulfur atom with partial π bond character (12) due to the known preference for third-row elements to form σ rather than π bonds.

Vibrational frequencies and intensities have been calculated for both disulfur trioxide structures at the $HF/6-31+G^*$ level (Table VII). The symmetric and asymmetric SO_2 stretch (1320, 1509 cm⁻¹, respectively, $HF/6-31+G^*$) should be diagnostic for the presence of 11. Both stretches are relatively intense as is a ring mode at 715 cm⁻¹. Applying a 0.9 scaling factor, bands are predicted at 1358, 1188, and 644 cm⁻¹. As an indication that the

Table VII. Calculated Vibrational Frequencies (cm⁻¹) and IR Intensities (km/mol) at the HF/6-31+G* Level for 11 and 12

twist

		O₂SSO (11)					
	HF/3-21G*	HF/6-31+G*	description		HF/3-21G*	HF/6-31+G*	description
a'	1331(315)	1320(345)	SO ₂ s stretch	a'	1446(236)	1147(282)	SO stretch
	972(31)	975(52)	SSO ring		1171(148)	1152(192)	SOO ring
	698(156)	715(189)	SSO ring		837(242)	831(199)	SOO ring
	601(48)	601(24)	SSO ring		648(43)	626(72)	SS stretch
	527(35)	523(27)	scissor		484(29)	477(20)	bend
	420(5)	430(8)	bend		352(8)	346(4)	scissor
a″	1524(249)	1509(296)	SO ₂ as stretch	a″	699(0)	759(7)	SSO as stretch
	485(32)	478(26)	bend		458(27)	453(21)	bend

307(2)

calculated frequencies of S_2O_3 are reliable, the calculated frequencies for S_2O (434, 781, 1352 cm⁻¹, HF/6-31+G*, unscaled) are in good agreement with experiment³⁵ (388, 679, 1165 cm⁻¹).

282(0)

Conclusion

287(0)

From the study of SO₄ species, it can be concluded that the species observed in an irradiated low-temperature matrix of SO₃ and O_3 is a SO₄ structure of $C_{2\nu}$ symmetry containing a threemembered SOO ring. The ring structure is calculated to be lowest in energy and the vibrational frequencies and isotope shifts are in good agreement with experiment. A peroxy-like species, calculated to be 18.0 kcal/mol less stable, is a possible species on the decomposition path to SO_2 and O_2 .

The most stable disulfur trioxide species, S_2O_3 , is predicted to have two terminal oxygen atoms and a three-membered SSO ring. The structure is exothermic with respect to SO₃ plus a $S(^{1}D)$ atom which suggests that a possible route for the synthesis of this novel compound might be to generate singlet sulfur atoms in the presence of SO_3 in a low-temperature matrix. The vibrational frequencies are reported in the hopes that they will aid in the experimental identification of this molecule.

304(0)

twist

Acknowledgment. I thank the donors of the Petroleum Research Fund, administered by the American Chemical Society, for financial support. Computer time for this study was made available by the Alabama Supercomputer Network and the NSFsupported Pittsburgh Supercomputer Center. Dr. David Stanbury is acknowledged for many helpful discussions.